Get the latest posts from Dr Jonathan Reed on your
Yahoo! Home Page. Yahoo!

Child Neuropsychology

A blog by Dr Jonathan Reed

  • The world of genetics is moving so fast it is hard to keep up. Luckily one of my favorite writers on the subject Robert Plomin (together with Oliver Davies) has written an update on the genetics of child psychology and psychiatry in the Journal of Child Psychology and Psychiatry. There is a lot of information in the article regarding the latest genetic findings but the issue that stuck me most was about how our understanding about how genes work is changing. My understanding of genes was the classic model described succinctly by Plomin and Oliver as a gene is a sequence of DNA that is transcibed into messenger RNA which is then translated into amino acid sequences, the building block of protein”. The proteins then build to form brain structure, neurotransmitters etc.

    The hunt has been on to find the genes that affect behavior and illness using this classic DNA process. There have been successes with a number of single gene neurological disorders identified such as Huntington’s Chorea and PKU. For these conditions the gene has been located and the sequence from gene to protein to behavior is well documented. Unfortunately this process has not worked in discovering the genes for most other psychological/ psychiatric disorders or for behavior in general. Although it is clear that there is a substantial genetic component in behaviors such as IQ, reading and language and disorders such as ADHD and Autism, as shown by twin studies, the actual genes responsible have not been found. Recent arguments have focused on the idea that many genes may be involved in combination to influence such behaviors. Plomin’s article however also raises another difficult issue. There may also be a problem with the standard DNA model as an explanation for gene- behavior effects. There are a number of puzzles regarding the standard coding DNA model. Firstly there are far fewer of these traditional genes than expected (about 24,000 in humans). Also they only make up about 2% of DNA, the other 98% were said to be junk, a byproduct of evolution. Another factor is how little these traditional genes vary between individuals and species for example simple worm like creatures called called nematodes have 19000 genes compared to the 24000 in humans. Are we not that much different to nematodes? Chimpanzees share 99.4% of DNA coding genes with humans.

    Plomin and Oliver show that part of the problem may be that we have not focused on the way that RNA works. Out of the 98% thought to be junk DNA about 1/2 does produce RNA but not the type of RNA that codes for amnio acids. Instead the non coding RNA ‘plays an important role in regulating the expression of the protein coding DNA‘. RNA is also much more complicated than once thought and many different types of RNA have now been identified, including microRNA, tRNA, snRNA, rasiRNA, snoRNA, etc. How RNA works is explained in detail in the article but that explanation is too detailed to describe here other than to say that there is much more variation between individuals and species in terms of their RNA profile and that it is the RNA that may hold the key to understanding more complex gene behavior effects. The implication of these findings according to Plomin and Oliver is that we should be analyzing the whole genomes of individuals rather than searching for individual genes. This is becoming cheaper and easier to do but so far the results are still very limited.

    My take home message from the article was that genes and their effects are not as simple as most people believe and as much of the media describes. It is very unlikely that we will find the gene for Autism, for IQ or for being gay. Instead such behavior is likely to be the result of a complex interaction of many different genes, with different types of RNA dictating how the genes are expressed which in turn will probably be influenced by factors in the environment. Hugh discoveries are being made all the time but I think the more that is known the more complex it all seems.

  • A new study published in Science spells out how brain training may work at a biochemical level. One of key candidates for effective brain training is working memory. Working memory is the ability to hold information in mind in the short term. We use it in mental maths, remembering instructions and it is a key component in childhood learning in general. Difficulties with working memory are seen in a variety of childhood disorders including ADHD and brain injury. Previous studies have shown that working memory can be improved by training. Studies have also shown that training working memory produces changes to the frontal and parietal parts of the brain. This latest study shows how the changes occur at the biochemical level. The key neurotransmitter here is dopamine, which is particularly prevalent in these frontal areas. This study in Science shows that 14 hours cognitive training using a computer game resulted in changes in the density of dopamine receptors. These are exciting findings showing that change to brains at a fundamental level is possible using computer based learning. It has major implications for the treatment of disorders such as ADHD as well as learning in general. The important lesson is that brain training needs to be focused on specific brain areas and functions, namely the areas that have the most plasticity.

  • Does brain training work? There are a number of conflicting studies in the literature see Guardian games blog for example. There has recently been a lot of interest in the Ninetendo DS brain training game although I am not aware of any published work on it’s effectiveness (but see this BBC site article for some anecdotal evidence.) I have just come across a good study in the British Journal of Educational Technology by Miller and Robertson 2009 showing improvements in self esteem, and accuracy and speed of mental maths using the DS brain training games (Also see comment from Derek Robinson below). I note that in this study only the specific task of mental maths improved, which is partly what the DS program trains.  I don’t think there is evidence that the DS BT works across different areas to train the brain as a whole.  Nintendo brain training does not train specific brain areas or functions and does not fit with contemporary neuropsychological theory.  It is a more broad brush approach.   In reality the brain has numerous functions linked to different anatomical areas and trying to train the whole thing at once is, I think nonsensical. Brain training will have to become a lot more targeted if it is to work.

    There is some evidence that targeting specific areas can be effective. The key candidate at the moment is working memory. Working memory is the ability to hold information in mind i.e mental arithmetic , remembering lists of instructions etc. Working memory is associated with the dorsal-lateral pre- frontal cortex in the brain. There is an interesting paper in PNAS that shows that training working memory resulted in increased IQ levels. You can access the training site and try it for yourself here for free. Also there is some interesting new research on improving working memory using a computer game, which is due to be published soon and which I will report on here.

    The key to brain training is to know how the brain works and how it develops and then to target set areas. My own company Neurogames produces brain training games based on the science of brain and psychological development. The games are targeted on areas where I think we should be able to produce change and where I think brain plasticity exists. It is important to understand how the brain and it’s functions develop as this holds the key to what can potentially change. I am carrying out research on this at the moment. If we can show through good science and based on solid neuropsychological theory that change can occur and how it occurs, then there is the possibility to revolutionize how we learn.

    Note: Update 20.4.10 a new large scale study published in Nature suggests that Nintendo brain training is not effective in producing transferable cognitive benefits.  Initial nature study is published here