Get the latest posts from Dr Jonathan Reed on your
Yahoo! Home Page. Yahoo!

Child Neuropsychology

A blog by Dr Jonathan Reed

  • There is more evidence of the neuropsychological benefits of playing action video games in a new paper to be published in July by Matt Dye and colleagues in Neuropsychologia. This paper shows that playing action video games resulted in improvmenets in attention allocation in children and young people. The authors used the Attention Network Test (ANT) which measure “how well attention is allocated to targets as a function of alerting and orientating cues, and to what extent observers are able to filter out the influence of task irrelevant information flanking those tasks”. The subjects were children and young people between the ages of 7 and 22 who had played action games (such as Halo, Metal Gear, Quake, Grand Theft Auto, Medal of Honor etc) and non action games (Age of Empires, Mario, Solitaire etc) for any length of time in the preceding 12 months (note see the paper for a full list of games categorized). The action video game players performed better on the ANT compared to non action game players. The authors interpret the results as the action players having better attention allocation. In my interpretation they seemed to be able to attend to more data simultaneously rather than focus on certain information. The action games players seemed to have faster speed of processing and picked up visual cues quicker.

    This paper adds to a body of work carried out by the University of Rochester showing how computer games change brain function (see examples in web pages by Daphne Bavelier and Matt Dye ). This also fits with other posts on this site. The reason I think that this happens is that computer games involve continued stimulation, seem to act on implicit learning, are structured, follow repeated patterns and are very rewarding ensuring that players practice them repeatedly. All of these factors show the potential of computer games for neuropsychological rehabilitation and for education. It is clear however that not all computer games work in the same way. For computer games to be harnesses in the most effective way it is important to know which parts of the brain are more plastic (i.e. more likely to change) and which elements of the computer games most produce this change. Candidates for areas of plasticity that I have come across include working memory, visual contract sensitivity, attention allocation, speed of processing, visual motor co-ordination and literacy and numeracy development (see Neurogames). There may be other areas. In terms of the type of games, certainty action based games seem to produce changes in attention and visual function. Games requiring remembering short term information are also important. Again there will be others. For any computer game development company out there there are potentially massive benefits (commercially and for social benefit) by getting these elements right. I would be keen to hear of other people’s experience and any ideas about how this can be taken forward.

    1 Comment
  • There is an interesting article in the Sunday Times this week entitled ‘how to make your child more intelligent’. It seems to be based in part on a new book by Richard Nisbett entitled ‘Intelligence and How to Get it: Why Schools and Cultures Count. Whilst the article makes a number of important points the overall tone feels a bit like the old nature/ nurture debate, which I thought was over years ago. The article starts by stating that ‘Over recent years most experts have concluded that intelligence is largely genetic in origin, and that nurture does relatively little to raise an individual’s potential’. I am not sure which experts they are referring to here as anyone who knows anything about the genes and IQ literature knows this not to be true. The relationship between IQ and genes has been researched very thoroughly. The consistent finding is that genes account for about 50% of variance, which leaves 50% due to environmental factors. The article seems to try and overemphasize the role of environment and diminish the role of genes. It states ‘demolishing the finding of twin studies is part of the argument against genes controlling intelligence.’ This is the argument that twins who are adopted and reared apart have similar IQ. The article argues that twins who are adopted and reared apart have a similar environment in that adopted parents are highly likely to give their children a good start in life. This seems a highly tenuous argument. Are all adoptive environments the same? Would this produce such consistent findings? Also would this argument hold for all the twin studies looking at heritability in schizophrenia, autism, ADHD etc. Dismissing twin studies is a familiar ploy of people who want to dismiss the genetic factors and one I thought had died years ago. It undermines what is otherwise a good argument. The results for the gene and IQ studies are very consistent and researched in some detail. It seems silly to me to claim that genes don’t have an effect on brain and psychological development. You don’t need to knock the gene studies to show that environment is important. The gene studies already do this.

    Another factor that points to the importance of genes in IQ is that clinical experience and research suggests that IQ is remarkable stable through lifetime. Twins actually become more similar in IQ scores as they get older. Something must be driving this. IQ doesn’t change easily, although there are obvious environmental factors at work. Certainly it is clear from the Flynn effect that IQ has been steadily rising over the last 100 years (obviously genes are not evolving that fast). There is a lot of research on environmental factors influencing IQ. IQ is a complex concept that is not totally understood, but from the research there are some candidates for strong environmental factors that have an impact on IQ development. These include having a stimulating early environment, good early nutrition, an environment rich in language and literacy. There is also research showing how targeted computer games may raise IQ. There are other suggestions in the article although i am not sure about the research to back them up – I am certainly not aware of the value of meditation on IQ, encouraging self control or having bigger babies to name a few mentioned in the article.

    So overall, yes I believe we can encourage children to be more intelligent (although as IQ as currently assessed is a comparison measure it will be difficult to measure this) and I applaud the article for highlighting this. I think we should try. But don’t dismiss the influence of genes. That influence is always there and if ignored can result in my opinion in insidious effects such as a lack of social mobility. Parent’s genes are important in part in determining early child environments (i.e. stimulating, language rich environments with high levels of nutrition) and therefore IQ development. This is a political question. I think that overall improved IQ and literacy should lead to a better society (although many other factors are important too). To achieve this early intervention by the State will be probably be needed. We will need to understand the whole picture if we are to move forward.

    PS the article does contain a good section demolishing the race, genes and IQ argument and should be read for that alone.

    No Comments
  • One of the most distressing symptoms for many of the children and young people I see clinically after a traumatic brain injury or stroke is the physical disability caused by the neurological injury. Most parents, children and young people hold out most hope for a physical recovery. The physical disability is the most visible symptom to the patient, their families and to other people. At present the main therapy to help with this is physiotherapy. Physiotherapy requires repeated exercise to try and improve physical function. Recent research has shown that physiotherapy is more effective in treating adult stoke patients than no therapy, although the type of physiotherapy used didn’t seem to make a difference. However, even with a disorder as physically treatable as stroke about 50-60% of individuals do not make a full physical recovery. I think the numbers for TBI based injury who don’t make a recovery would probably be higher. The other problem with a behavioural based phsyiotherapy is that it is difficult to maintain particularly for children and young people with neurological based injury. The exercises tend to be repetitive, lack meaning and often require the individual to remember and practice the therapy on a daily basis. This is a particular problem when children are discharged from hospital and may only see the physiotherapist on a weekly basis. An additional problem maintaining therapy occurs for children and adults with other neurological symptoms such as executive function difficulties (i.e difficulties with initiation, self monitoring, motivation etc) and memory difficulties. Therefore there is a need to develop other treatment approaches. A special edition of the Journal of NeuroEngineering and Rehabilitation out last month is devoted to innovative ways to treat neurologically based physical disability. These are mainly based on non invasive brain stimulation. One approach is Transcranial Magnetic Stimulation. This is based on stimulating the brain using powerful magnets. The neuroscience behind this is explained in detail here. It is believed to enhance the process of plasticity. In terms of outcome this article concludes that ‘There has been some modest functional improvement reported after some NBS interventions, however the longer-term clinical benefits remain unproven’.

    Another approach discussed in this article is the use of robotics e.g using a robotic arm/ exoskeleton to deliver the physical therapy. This takes the effort away from the person and could deliver very precise exercises. It also seems to rely on implicit (rather than explicit) learning which is the way that individuals with brain injury seem to learn best – see this post. The authors describe the outcome research as follows “In a systematic review of eight robotic neurorehabilitation trials, Prange and colleagues concluded that robotic therapies led to long-term improvement in motor control by increasing speed, muscle activation patterns and movement selection, although no consistent benefit was found with ADL (Activities of Daily Living) measures (note the authors explain why this may be the case). There could also be the possibility of combining the robotics with virtual reality and computer games to make physical rehabilitation motivating, fun and engaging. This would make it much more likely for children and young people to benefit from the therapy.

    In all it is still very early in terms of this research to recommend new types of treatment now, but it does show that there are a number of new techniques on the horizon. These techniques would be especially relevant for children and young people with a neurologically based physical disability.

    1 Comment