Get the latest posts from Dr Jonathan Reed on your
Yahoo! Home Page. Yahoo!

Child Neuropsychology

A blog by Dr Jonathan Reed

  • I have just created a new game that involves working memory as part of the play.  The game is called Memorise and is available free on iTunes .  Memorise allows you to test your visual spatial working memory and to see if you can improve it over time.

    Working memory is the ability to hold information in mind in the short term and manipulate it.

    The reason I chose to develop a game involving working memory is the increasing body of research that shows that working memory can be improved with training and that improving working memory can have a wealth of other benefits.

    Examples in the research include:

    Working memory training can change brain function – see Olesen, Westerberg and Klingberg 2004

    Improve Fluid Intelligence (IQ) see Jaeggi et al 2008

    Reduce some symptoms in ADHD  see Klingberg et al 2005

    Help improve academic achievement see Holmes and Gathercole 2009

    and help individuals with brain injury see Johansson and Tornmalm 2012

    Developing visual spatial working memory seems to be particularly important and is associated with increased brain activity in Frontal and Parietal areas in childhood and similar brain network in adults

    Working memory training basically involves repeated practice at holding information in mind.  This can be boring but with Memorise I have tried to create a fun and motivating game that also produces benefits.  Memorise has some built in rewards to encourage your brain to carry on playing.  Memorise also adjusts according to your level, which reduces the sort of frustration seen in many similar games.   You can download the training report to monitor your performance over time and to see if you can improve your working memory ability.

    Memorise is a fun way to test your working memory and try and improve.  It is not a medical treatment.  If you have a medical condition and want a more detailed and clinically focused approach I would recommend trying the Cogmed program.

    Have fun and let me know how you get on.

    1 Comment
  • All children should be able to learn to read.  Our scientific understanding of how children learn to read is becoming very advanced.   I have reviewed some the research here.   Now a meta analysis (review of lots of studies) published this month in Psychological Bulletin by Monica Melby-Levag et al shows very strong evidence for the importance of phonological awareness in learning to read.  The blog post by psychologist Daniel Willingham explains in more detail the implications of this. The most notable points are that there is a causal relationship between phonological awareness and reading and phonological awareness seems to be the most important factor in reading development.

    Yet despite this knowledge there are still high levels of poor reading worldwide and in the UK.  A recent report by Department of Education shows that In the UK city of Nottingham 15% of boys (1 in 7) aged 7 had not reached the expected level in reading.

    Somehow the scientific information is not being applied.   Is there anything that can be done about this?

    I believe that technology may have a role to play.  It is possible to incorporate these latest scientific findings about reading into computer games, which help children learn.   I have attempted to do this in a small way in a new app for the iPad called phonics with Letter Lilies which can be downloaded here.  The game is free so available to anyone.  It is based on teaching phoneme awareness.  It is important to point out that whilst there are an number of games that claim to teach phonics most are actually just teaching ABC and letter sounds.  Phonemes are the actual units of sound used when reading.  I believe that there is great potential to teach phonological awareness using games.  I have undertaken some initial research which suggests that these games significantly improve reading, although more research is required to understand this fully.  More background on the games can be found on this website.

    One of the key issues is getting these games out to a wide audience.  I think games which help learning can be a very efficient and cost effective intervention.   Ideally schools should be investing in iPads because they are great ways to learn- see previous post .  One of the problems at present is that there are a large number of apps on the market, many of which have not been designed with much thought.   There is a need to sort and review the ones that are most effective and helpful.  I think that there is tremendous potential in developing iPad games based on science.  There may come a day when children are not leaving school unable to read.

    1 Comment
  • I recently wrote that too many educational computer games look too educational and are not fun to play.  I have recently, however, come across a couple of causal games that although they don’t set out to be educational actually are, but are also addictive and fun.   Casual games are simple, cheap games that are easy, yet compelling to play.   The first game Drop 7  by area/code is a game involving numbers but also works a bit like Tetris.  To play you have to drop different balls with numerals inside into rows or columns and try and ensure that the numerals and the number of balls match i.e. every time you line five balls up the ones with the numeral 5 in them disappears.  I think that this game, without intending to, actually reinforces numerosities,  which is the ability to automatically recognise the number of objects in a set.  Understanding Numerosities is associated with the intraparietal sulcus in the brain and is the foundation for the development of mathematical thinking.  Individuals with dyscalculia (maths dyslexia) have difficulties with this concept.   I don’t think the designers knew this and just designed an addictive clever game.   But it would be interesting to research whether this does actually help children and especially those with developmental dyscalculia to develop in terms of maths.   In the meantime at the least it is a good fun way for children to reinforce automatic number understanding.

    The second game by one of my favourite casual gaming companies Popcap is called Bookworm.  In this game you have a grid of letter tiles and have to create words out of them.  You get points for the complexity of the word.  You also have to use up a burning tile before it reaches the bottom of the page (it goes down one step every time).  It is a fun, fast moving, compelling game but improves word knowledge and spelling at the same time.  Popcap are great at developing addictive simple games such as Bejeweled and Peggle.  It is great to see that they can use the same principles to create games that are educational.

    I should note that both games are also just fun for adults and children to play.  Me and my children enjoying playing them as well as other games just to relax.  They are great on the iphone.  I am sure that they are good at producing increased levels of dopamine (the reward neurotransmitter) in my brain!

  • I have just seen the preliminary findings of the first independent research study on Neurogames, the games I have developed to help reading and maths. The study was undertaken on 20 children aged 4 to 6. 10 children were given the computer games to play for 20 mins twice a week for 13 weeks at school. 10 children were not given the game and received normal teaching in a different class. Both groups were tested on standardized reading and maths tests (WIAT) before and after the intervention. The results show that the computer game group had an average maths score of 102 (average) before using the games which rose to 123 (above average) after playing the game for 13 weeks. The average group reading score before playing the games was 101.7, which increased to 114.9 after the game. In contrast the children not playing the game started with a reading score of 106.4 and this increased to 109.1 over time. Their maths score started at 103.6 and increased to 109.9. Therefore the study shows that exposure to the Neurogames for 13 weeks lead to substantial increases in maths and reading compared to the control group. These are preliminary findings and they need to be independently reviewed and published but they indicate what may be possible with computer based learning.

    I think that this also shows the importance of scientifically evaluating computer games based on learning. At present whilst there are many educational or brain training games on the market very few are being scientifically evaluated to see if they are effective. There are lots of games that look very good and claim to be brain training or educational but don’t seem to me to have any rationale let alone any evidence. For computer games based learning to develop in my opinion more research has to happen. Computer games lend themselves to scientific study given that they can be seen as a standardised intervention (i.e. they are the same each time they are given) and are easy and ethical to administer. Games can also be developed to incorporate the lasted scientific knowledge- see previous post for discussion on this. I intend to encourage other researchers (please contact me if interested) to independently evaluate the Neurogames with a larger number of children next and also with children with different neurodevelopmental disorders such as dyslexia and dyscalculia. I hope that over the next few years there will be an increasing body of research showing which games and which elements of games are effective in learning and neuropsychological development. This could lead to a revolution in education and rehabilitation.

  • There is a lot of debate particularly in the media about the pros and cons about computer use with children. I believe that there are some fantastic potential benefits in developing computer games to teach children. Here are 5 of them:

    1. Dissemination of information- Our knowledge about child neuropsychological development is increasing all the time. But there is a problem communicating this to teachers and parents and applying this knowledge. Computer game based learning allows this knowledge to be disseminated to a large number of children. An example is dyslexia (by this I mean difficulties in learning to read). As neuropsychologists we know how reading develops, what part of the brain is involved, how to intervene to improve reading and how this changes the brain areas involved. And yet there are thousands of children who leave school every year unable to read. Developing computer games to address dyslexia using up to date knowledge is possible. Simple computer based learning can spread best practice to everyone (national and international).
    2. Motivation-One of the problems in teaching is in motivating children who find learning difficult or unrewarding. Computer games designers are the experts in motivation especially for kids. I rarely see kids even with severe ADHD who can’t sustain motivation for computer games. Computer game based learning allows educators to combine these motivating factors with learning.
    3. Effectiveness-It is possible to test the effectiveness of computer games based learning programmes in easier ways than it is to assess human taught programmes. Computer games are a standardised procedure that can be easily tested. In this way we combine scientific method with education to determine which programmes are most effective. This in turn will drive development resulting in more effective games over time. This fits with government priorities in producing evidence based learning interventions.
    4. Addressing reasons for learning difficulties. As well as targeting a direct area such as reading it is possible to address indirect reasons for learning difficulties using computer games. A prime candidate is working memory. Whilst it is possible to target and improve working memory directly (see post), it is also possible to use computer games to minimize the demand on working memory with learning programmes by using techniques such as error free learning. It is possible to reduce the need for verbal instructions for children who find listening difficult. It is also possible to reduce attention demands by using visually stimulating action based games.
    5. Computer are patient. As a teacher or parent it can be very frustrating teaching the same thing to a child who just ‘doesn’t get it’. The child also picks up on this and is often anxious about failure. Computers can be very patient. They will repeat the same procedure in the same tone time and time again. Some clever games can lower or raise the demands on the child automatically depending on how the child is doing. The child can work at their own pace and level.

    Therefore in my opinion for all these reasons it makes a lot of sense to develop computer game based learning on a widespread basis. At the moment I think the field is in it’s infancy. To produce good computer game based learning requires a combination of great games design, cleaver programming to build in some of the important factors discussed above and expertise in teaching/ child neuropsychological development. There are thousands of learning games out there but very few based on knowledge of neuropsychological development, with good game play and research to show their effectiveness. I hope that this will change- it could change a lot of children’s lives.

    For an example of a computer game based learning using neuropsychological knowledge visit my games site- Neurogames.