Get the latest posts from Dr Jonathan Reed on your
Yahoo! Home Page. Yahoo!

Child Neuropsychology

A blog by Dr Jonathan Reed

  • I am a avid user of Twitter and find all sorts of interesting information on there. As with the web, however it is difficult to sort out what is important. It also moves so fast that it is hard to keep track. This post highlights some important tweets I have seen regarding advances in neuroscience in the last two weeks.

    1. Repairing brain cells- Researchers at the Montreal NeurologicaI Institute and Hospital (The Neuro) and McGill University group at Montral University have developed a new technique to help repair damaged nerve cells. The study was in the October 7 issue of Journal of Neuroscience. They show that it is possible to use plastic beads coated with a substance that encourages adhesion to help cells grow and form new synapses. You can read about this study here

    2 Gene therapy. A study reported in Nature News investigated possible gene therapy for Parkinson’s disease. Parkinson’s disease is a neurological condition affecting motor control and is associated with a depleted neurotransmitter, dopamine. St├ęphane Palfi, a neurosurgeon at the French Atomic Energy Commission’s Institute of Biomedical Imaging in Orsay, and his colleagues simulated Parkinson’s disease in monkeys and then injected the monkeys’ brains with three genes essential for synthesizing dopamine. They saw significant improvements in motor behaviour after just two weeks, without any visible adverse effects. “We don’t see any problems in these monkeys,” says Palfi. One animal even exhibited sustained recovery more than 3.5 years later. You can read about this study here.

    3. Understanding brain development. Researchers at the Stanford University School of Medicine have identified a key molecular player in guiding the formation of synapses. The paper, published online Oct. 8 in the journal Cell, looks at the interaction between neurons and astrocytes. The relationship is complicated but to quote from the report in science daily “It is commonly agreed that the precise placement and strength of each person’s trillions of synaptic connections closely maps with that person’s cognitive, emotional and behavioral makeup. But exactly why a particular synapse is formed in a certain place at a certain time has largely remained a mystery. In 2005, Barres took a big step toward explaining this process when he and his colleagues discovered that a protein astrocytes secrete, called thrombospondin, is essential to the formation of this complex brain circuitry.

    In this new study, Barres, lead author Cagla Eroglu, PhD, and their colleagues demonstrate how thrombospondin binds to a receptor found on neurons’ outer membranes. The role of this receptor, known as alpha2delta-1, had been obscure until now. But in an experiment with mice, the scientists found that neurons lacking alpha2delta-1 were unable to form synapses in response to thrombospondin stimulation.

    The researchers stimulated neurons with thrombospondin and found, those neurons produced twice as many synapses in response to stimulation than did their ummodified counterparts. Understanding this key mechanism could help explain children’s brains development and why this goes wrong for some children. Understanding the biochemistry holds out hope for future treatments. You can read the full report here.

    4. Computer games and rehabilitation. Every week there are reports on how computer games can help learning. As you will see from previous posts on this blog I am great believer in the potential of computer games for rehabilitation and learning. Just one interesting post this week shows an initiative to help individuals with strokes to regain movement using computer game technology. Read about it here.

    This is just a small selection of the information I am finding on Twitter. It shows some of the advances that are being made to understand and help individuals with neurological illness. You can follow me on Twitter here.

    No Comments
  • Scientific and technological knowledge is developing very fast. This post is about some of the ways in which we could use this knowledge to help children develop in ways that will help them and change society in the long term. These are just a few examples of what we know and what we could do.

    1. Eliminate dyslexia- not being able to read as well as being difficult for the individual involved also is associated with significant social problems for example approximately 50 % of adult in prison in the UK have difficulty reading and 80% have difficulty with writing. We know how to treat dyslexia (see this post) Eliminating dyslexia has been attempted in one school district in Scotland with great success. Why can’t we do this everywhere?

    2. Teach children how to be happy- There is a large literature on the science of happiness. For example see Paul Martin’s book Making Happy People: The Nature of Happiness and Its Origins in Childhood. We could use this science to teach children how to live happy lives. Helping children develop in this way early on could set up life long patterns. Imagine the effect on society.

    3. Introduce safe internet based social networking for all children. The potential power of computer based social networks is immense. With twitter, facebook and email we can now talk, communicate and work with people from all walks of life and from all over the world. These have the power to expand social networks and work against isolation and xenophobia. School children could from an early age learn to communicate and work with other children all over the world. There are risks for children in terms of social networking which are often highlighted in the media i.e. abuse online- but the key is to develop safe social networks, for example see Moshi Monsters. Developing safe social networks for children at school could have massive benefits for how they see the world from a social perspective.

    4. Improve children’s working memory (short term memory) – see post. Working memory involves holding information in mind and manipulating it. It is involved in listening to instructions, formulating thoughts, planning etc. It is linked with academic and intellectual development. It is a key skill to have as an adult. Difficulties with working memory are also associated with children with neurodevelopmental problems such as ADHD. We have the tools to help improve working memory in children. This is brain training at it’s best. Could this be part of regular school exercises in the same way as PE is?

    5. Develop Computer based learning- so many children become disillusioned with learning and give up. Computer based learning has the power to engage children and deliver learning in new specialized ways. Games designers have worked out with great success how to motivate children. Neuroscientists know how children learn. If we combine knowledge in these two areas we could revolutionize learning. I have started on this process in with Neurogames. Also see the Consularium blog for examples of how this has been tried in innovative ways in schools in Scotland.

    These are just some ideas, but imagine if we could produce a generation of children who were happy, with optimal brain development, with a broad social network, whose brains are primed to learn and think. What would this do for the next generation and for society in the future. We have the knowledge to do this. Could we make it happen? Let me know what you think?

    1 Comment
  • I have just developed a new concept combining my knowledge of neuropsychology with computer games. It is called Neurogames and the games are available for purchase on my new website neurogames.co.uk. At present I have developed four games helping children to develop maths and numeracy. The games are based on the science of the development of reading and numeracy drawing on some of the work from the contributors writing in our book Child Neuropsychology as well as some of the research studies highlighted in this blog. The games take a developmental course mirroring the normal developmental sequence of reading and maths acquisition. The games also draw on my clinical expertise in terms of what helps children with neurodevelopmental difficulties. This includes errorless learning, frequent extrinsic rewards, visual based learning with bright attractive graphics and short game sequences with clear indicators to help children with short attention span. Computer games are also not critical and therefore the social pressure on learning is eliminated. Finally games are fun and Neurogames provides a new fun way of learning. I hope that the games will be helpful for children who find learning difficult whether it be because of a specific difficulty such as dyslexia or dyscalculia or because of a general difficulty such as ADHD, learning disability or brain injury. The games are easily to download and can be purchsed direct from the site. I also hope over the next year to develop more games to help with language and memory development. Let me know what you think.

    No Comments
  • One of the major problems with the internet is wading through the junk and knowing whether what you are reading is correct and valid. In terms of knowledge about neuroscience I would recommend the website Neuroscience for Kids. Although it is aimed at kids it is not simplistic and much of the information is also a useful lay guide to neuroscience for adults. It can also be informative for children especially if they have any injury or illness connected to the brain. I think that this site is an excellent resource and shows the internet at it’s best.

    No Comments