Get the latest posts from Dr Jonathan Reed on your
Yahoo! Home Page. Yahoo!

Child Neuropsychology

A blog by Dr Jonathan Reed

  • I have just created a new game that involves working memory as part of the play.  The game is called Memorise and is available free on iTunes .  Memorise allows you to test your visual spatial working memory and to see if you can improve it over time.

    Working memory is the ability to hold information in mind in the short term and manipulate it.

    The reason I chose to develop a game involving working memory is the increasing body of research that shows that working memory can be improved with training and that improving working memory can have a wealth of other benefits.

    Examples in the research include:

    Working memory training can change brain function – see Olesen, Westerberg and Klingberg 2004

    Improve Fluid Intelligence (IQ) see Jaeggi et al 2008

    Reduce some symptoms in ADHD  see Klingberg et al 2005

    Help improve academic achievement see Holmes and Gathercole 2009

    and help individuals with brain injury see Johansson and Tornmalm 2012

    Developing visual spatial working memory seems to be particularly important and is associated with increased brain activity in Frontal and Parietal areas in childhood and similar brain network in adults

    Working memory training basically involves repeated practice at holding information in mind.  This can be boring but with Memorise I have tried to create a fun and motivating game that also produces benefits.  Memorise has some built in rewards to encourage your brain to carry on playing.  Memorise also adjusts according to your level, which reduces the sort of frustration seen in many similar games.   You can download the training report to monitor your performance over time and to see if you can improve your working memory ability.

    Memorise is a fun way to test your working memory and try and improve.  It is not a medical treatment.  If you have a medical condition and want a more detailed and clinically focused approach I would recommend trying the Cogmed program.

    Have fun and let me know how you get on.

    1 Comment
  • There is increasing evidence that playing video games improves neuropsychological function.  I have just been reading another excellent paper from the people at the University of Rochester called Increasing Speed of Processing with Action Video Games.  The paper written by Mathew Dye, Shawn Green and Daphne Bavelier looks at a range of previous studies on reaction time and video game playing.  The introduction to the paper states:

    Playing action video games-contemporary examples include God of War, Unreal Tournament, GTA, and call of Duty – requires rapid processing of sensory information and prompt action, forcing players to make decisions and execute responses at a far greater pace than is typical in everyday life.

    Looking at lots of different studies they conclude that:

    • Video Game Players (VGP) have faster reaction times (RT).
    • RT can be trained by action game play (thus showing causation)
    • Improved RT is not at the cost of more impulsivity.  Increased RT do not result in more errors (as measured by the TOVA)

    This paper adds to a body of research showing improved neuropsychological function; for example in working memory, increased literacy and numeracy and improved attention.

    I don’t find this surprising.  Games provide reinforced repetitive mental activity.  Anyone who plays them knows that they are challenging yet very motivating (even in those with generally poor motivation).    Games designers are experts in terms of human motivation. I have written before about the benefits of computer game based learning here.

    Yet despite these increasing positive findings I don’t see research being translated into great educational application.   Many educational/brain training games are actually quite dull- a point well made on the educational games research blog.  Partly to me there still seems to be a mindset that educational games and brain training games need to look educational. It would be good to produce educational and brain training games that look and play like real games.   Also games based on research are often devised by academics, teachers and clinicians (like me) who don’t have the budget and expertise to produce games in the way that commercial games developers do. Whilst there is research showing that existing commercial games can improve neuropsychological benefits, imagine what specifically designed games could do.

    To move the situation forward there is a need to put serious attention and resources into educational/neuropsychological games that combine the latest research with the latest exciting, engrossing game play.  I think that this does require a new mindset and a good degree of creativity.  Also it is uncertain where the market is for this is-; Schools? Concerned parents?  Governments?  It may not be profitable at first.  Existing brain training tends to target adults looking for self improvement and adults are always willing to pay for this.  Trying to improve child education/development is different.  However if someone/ some company was prepared to invest they could produce something fantastic, with great benefit.   I think video games can change education and development but I think it will take something special to realize this potential.

  • Children’s welfare and development entered UK politics yesterday with David Cameron the Conservative leader talking about the warmth of parenting being more important than poverty in outcomes with poor children. Polly Tonybee in the Guardian wrote a stinging reply. This prompted me to think about my experience as a child psychologist with children from neglected backgrounds. For the past 13 years some of my work has involved assessing children in care, both residential and foster care. This has shown me how damaging early experience of abuse and neglect is for children, how it is reinforced and not addressed. It is a big problem. There are approximately 60000 children in care in the UK . The number of children with a child protection plan is increasing every year. The vast majority of children that I see in this context have cognitive, social and emotional difficulties. It is rare to see a good outcome. In the UK 12% of children in care get 5 GCSE passes compared to 59% in the general population. 23% of adult prison population were in care as children, 42% of prostitutes had been in care and 45% have mental health problems.

    In my experience there is often a common pathway. There is a history of concern about abuse and neglect dating from birth. Often the parents themselves had a history of abuse which they cope with by taking drugs and alcohol. They have no experience of good parenting themselves. Women often end up with partners who perpetuate abuse in the form of domestic violence. Many children are placed on and off the Child Protection Register during early childhood. Eventually (normally from age 8-13) they are placed in foster care. The children in residential care seem to have had several foster placements break down first. By the time they are placed in residential care it is too late to change the situation. By this stage children start to become involved in drugs, gangs, criminal behaviour, start underachieving educationally and in the case of young women engage in abusive relationships. Obviously this doesn’t happen to everyone but I would estimate it does in 70% of the cases I see. The cost to society is massive and the cycle of problems continues.

    What is also often missing in the debate is the effect on the brain of abuse and neglect. The first five years of life are crucial in terms of brain development. A recent study by Evans and Schamberg looked at the effect of childhood poverty and stress on working memory and explains the mechanism by which this happens. For a review of the literature on neglect and brain development in general see this paper by Danya Glaser. My own data and experience shows a large proportion of children in care with learning problems, neuro-developmental difficulties, self regulation problems and difficulties with social relationships. Waiting until a child is a teenager and then putting them in prison, giving them counseling or criticizing them doesn’t work. Their brains are already damaged. Trying to blame their parents or fine them doesn’t work either. Often they can’t cope in life due to their own history of abuse, drug addiction or neurodevelopmental problems.

    In my opinion the state has to intervene at an early age to break this cycle. There was recently an interesting article by Camilla Batmangheldjh in The Times about the need for good child protection to break the cycle of violence. There may be a need to remove children much earlier from the damaging home environment and place them in care rather than wait for the damage to occur, reinforce it with several short term placements and then put them in residential care in their teens. It would be better for children to return back to parents without the early damage. It may be that providing very high levels of one to one support in the home situation would help. Leaving it to the parents to change by themselves or expecting them to change through nagging,criticism or simple intervention won’t work. Ignoring the problem won’t work. The fundamental point is the need to intervene early to change the inevitable brain damage that occurs. These children are often forgotten. Few people look out for them and I wish this would change. In my opinion it is not just about blaming poverty or blaming parents but seeing the cycle of abuse and neglect that occurs through generations, seeing how this affects brain development and then trying to intervene to stop that cycle perpetuating. Is this possible? Despite yesterday’s debate I don’t see any political party in the UK addressing this properly yet.

  • Our rehabilitation company Recolo is now offering the Cogmed working memory training program. Working memory is the ability to hold information in mind for a short period of time and to be able to use this information in your thinking. Problems with working memory are associated with a number of childhood conditions including ADHD, brain injury and poor academic achievement.

    We decided to provide the Cogmed working memory training in the UK because the research literature on it is impressive. It is effective in improving working memory in 80% of cases. The improvements have been demonstrated in neuropsychological tests, fMRI changes and rating scales. It can also be demonstrated at the neurotransmitter level- see previous post for details. It has been shown to be effective in improving working memory difficulties in children with ADHD and in adults with strokes. Klingberg is the main researcher in this area and his lab website contains copies of all the most important research papers. In particular the 2002 and 2005 papers are important Working memory training has also recently been shown to improved academic functioning in children with low working memory (Holmes et al 2009).

    The program we offer includes computer training using a game format. The game adjusts itself depending on the level of ability of the person training i.e. if the child finds a task difficult it will lower the demand- if child is doing well demands increases. We monitor performance centrally so we can see how the training is progressing. We also provide weekly coaching to ensure motivation The program lasts for 5 weeks (25 sessions). All these features and the research make this training in my opinion unique and different from other brain training programs.

    We can provide working memory training for children from the age of 4 to young adults up to age 25. If you are in the UK and would like to find out more please contact us on 020 7617 7180 or email or visit our website.

  • There is more evidence of the neuropsychological benefits of playing action video games in a new paper to be published in July by Matt Dye and colleagues in Neuropsychologia. This paper shows that playing action video games resulted in improvmenets in attention allocation in children and young people. The authors used the Attention Network Test (ANT) which measure “how well attention is allocated to targets as a function of alerting and orientating cues, and to what extent observers are able to filter out the influence of task irrelevant information flanking those tasks”. The subjects were children and young people between the ages of 7 and 22 who had played action games (such as Halo, Metal Gear, Quake, Grand Theft Auto, Medal of Honor etc) and non action games (Age of Empires, Mario, Solitaire etc) for any length of time in the preceding 12 months (note see the paper for a full list of games categorized). The action video game players performed better on the ANT compared to non action game players. The authors interpret the results as the action players having better attention allocation. In my interpretation they seemed to be able to attend to more data simultaneously rather than focus on certain information. The action games players seemed to have faster speed of processing and picked up visual cues quicker.

    This paper adds to a body of work carried out by the University of Rochester showing how computer games change brain function (see examples in web pages by Daphne Bavelier and Matt Dye ). This also fits with other posts on this site. The reason I think that this happens is that computer games involve continued stimulation, seem to act on implicit learning, are structured, follow repeated patterns and are very rewarding ensuring that players practice them repeatedly. All of these factors show the potential of computer games for neuropsychological rehabilitation and for education. It is clear however that not all computer games work in the same way. For computer games to be harnesses in the most effective way it is important to know which parts of the brain are more plastic (i.e. more likely to change) and which elements of the computer games most produce this change. Candidates for areas of plasticity that I have come across include working memory, visual contract sensitivity, attention allocation, speed of processing, visual motor co-ordination and literacy and numeracy development (see Neurogames). There may be other areas. In terms of the type of games, certainty action based games seem to produce changes in attention and visual function. Games requiring remembering short term information are also important. Again there will be others. For any computer game development company out there there are potentially massive benefits (commercially and for social benefit) by getting these elements right. I would be keen to hear of other people’s experience and any ideas about how this can be taken forward.

    1 Comment
  • Scientific and technological knowledge is developing very fast. This post is about some of the ways in which we could use this knowledge to help children develop in ways that will help them and change society in the long term. These are just a few examples of what we know and what we could do.

    1. Eliminate dyslexia- not being able to read as well as being difficult for the individual involved also is associated with significant social problems for example approximately 50 % of adult in prison in the UK have difficulty reading and 80% have difficulty with writing. We know how to treat dyslexia (see this post) Eliminating dyslexia has been attempted in one school district in Scotland with great success. Why can’t we do this everywhere?

    2. Teach children how to be happy- There is a large literature on the science of happiness. For example see Paul Martin’s book Making Happy People: The Nature of Happiness and Its Origins in Childhood. We could use this science to teach children how to live happy lives. Helping children develop in this way early on could set up life long patterns. Imagine the effect on society.

    3. Introduce safe internet based social networking for all children. The potential power of computer based social networks is immense. With twitter, facebook and email we can now talk, communicate and work with people from all walks of life and from all over the world. These have the power to expand social networks and work against isolation and xenophobia. School children could from an early age learn to communicate and work with other children all over the world. There are risks for children in terms of social networking which are often highlighted in the media i.e. abuse online- but the key is to develop safe social networks, for example see Moshi Monsters. Developing safe social networks for children at school could have massive benefits for how they see the world from a social perspective.

    4. Improve children’s working memory (short term memory) – see post. Working memory involves holding information in mind and manipulating it. It is involved in listening to instructions, formulating thoughts, planning etc. It is linked with academic and intellectual development. It is a key skill to have as an adult. Difficulties with working memory are also associated with children with neurodevelopmental problems such as ADHD. We have the tools to help improve working memory in children. This is brain training at it’s best. Could this be part of regular school exercises in the same way as PE is?

    5. Develop Computer based learning- so many children become disillusioned with learning and give up. Computer based learning has the power to engage children and deliver learning in new specialized ways. Games designers have worked out with great success how to motivate children. Neuroscientists know how children learn. If we combine knowledge in these two areas we could revolutionize learning. I have started on this process in with Neurogames. Also see the Consularium blog for examples of how this has been tried in innovative ways in schools in Scotland.

    These are just some ideas, but imagine if we could produce a generation of children who were happy, with optimal brain development, with a broad social network, whose brains are primed to learn and think. What would this do for the next generation and for society in the future. We have the knowledge to do this. Could we make it happen? Let me know what you think?

    1 Comment
  • A new study published in Science spells out how brain training may work at a biochemical level. One of key candidates for effective brain training is working memory. Working memory is the ability to hold information in mind in the short term. We use it in mental maths, remembering instructions and it is a key component in childhood learning in general. Difficulties with working memory are seen in a variety of childhood disorders including ADHD and brain injury. Previous studies have shown that working memory can be improved by training. Studies have also shown that training working memory produces changes to the frontal and parietal parts of the brain. This latest study shows how the changes occur at the biochemical level. The key neurotransmitter here is dopamine, which is particularly prevalent in these frontal areas. This study in Science shows that 14 hours cognitive training using a computer game resulted in changes in the density of dopamine receptors. These are exciting findings showing that change to brains at a fundamental level is possible using computer based learning. It has major implications for the treatment of disorders such as ADHD as well as learning in general. The important lesson is that brain training needs to be focused on specific brain areas and functions, namely the areas that have the most plasticity.